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Finite-size dependence of the bridge function extracted from molecular dynamics simulations
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~Received 30 November 2000; published 11 May 2001!

The bridge function for liquid sodium atT5373 K is obtained by using the mean spherical approximation
to extrapolate the pair distribution function~PDF!, calculated in molecular dynamics~MD! simulations, be-
yond the half simulation box length for two sizes of the MD system. The bridge function is found to strongly
depend on the total number of particles used in the simulation cell. This dependency leads to a spurious
maximum of the static structure factor at long wavelengths, obtained from the reference hypernetted-chain
approximation~RHNC! with the MD system used as a reference system~RHNC-MD!. A simple self-consistent
procedure, proposed to account for the finite-size effects in the bridge function, allows one to efficiently correct
the RHNC-MD static structure factor for all unphysical manifestations.
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I. INTRODUCTION

In recent years, the reference hypernetted-chain appr
mation~RHNC! has proven to be one of the most success
approaches in the theory of liquid state@1#. The key input
quantity in this approximation is the system’s bridge fun
tion B(r ). Bridge functions constructed from the ansatz
the hard sphere~HS! system— so-called variational modifie
hypernetted-chain approximation~VMHNC!—were found to
produce very reasonable agreement with the molecular
namics~MD! results for the pair distribution functions~PDF!
in a wide class of liquids. For some specific systems, ho
ever, the success of the VMHNC method is not quite
spectacular@2–4#. The main cause of the failure of the VM
HNC in those systems is assigned to the principal incapa
ity of the HS-based bridge function to mimic th
intermediate-distance part of actualB(r ), which depends on
the details of the underlying interparticle potential. As
alternative approach to the VMHNC for such ‘‘troubled
systems, a procedure of extracting bridge function from m
lecular dynamics simulations was proposed~see Ref.@2#, and
references therein!. The extraction procedure consists
solving the Ornstein-Zernike~OZ! integral equation@1#

h~r !5c~r !1rE c~ urW2rW8u!h~r 8!drW8, ~1!

supplemented by the following closure:

g~r !5gN~r !, r ,R,
~2!

c~r !52bUc~r !, r .R,

where c(r ) is the direct correlation functiong(r )5h(r )
2c(r ), h(r ) is the pair correlation function,g(r )5h(r )
11 is the pair distribution function. In Eq.~2!, b denotes the
inverse temperature 1/kBT with the Boltzmann constantkB
and the temperatureT, Uc(r ) is the cutoff two-particle inter-

*Permanent address: Institute for Condensed Matter Physic
Svientsitsky St., Lviv 79011, Ukraine.
1063-651X/2001/63~6!/061201~4!/$20.00 63 0612
xi-
l

-
f

y-

-
s

il-

-

atomic potential used in the simulation, andr is the particle
density of the system. The superscriptN overg(r ) in Eq. ~2!
indicates that this function is obtained from a molecular d
namics ensemble ofN particles. The capitalR in the right-
hand side of Eq.~2! stands for the extrapolation distance
the PDF which is limited to half the simulation box leng
L/2.

Molecular dynamics system interacting via the cutoff p
tentialUc(r ) can be considered as a reference system wi
the RHNC approach. The bridge functionB(r ) of such a
reference system is calculated from the solution of Eqs.~1!
and ~2! as follows:

B~r !5g~r !2 ln g~r !2bUc~r !. ~3!

We note that relation~3! is valid for both short distancesr
,R and long distancesr .R. It was shown earlier that in
liquid metals, the bridge function depends only weakly
the details of the long-range part of the interparticle poten
@3,4#. This means that the bridge function calculated fo
model MD system can be used to recover the structure of
full system, interacting via uncut potentialU(r ), by solving
the OZ equation complemented by the closure

g~r !5exp@g~r !2bU~r !1B~r !#. ~4!

We will refer to this method of calculating the PDF as t
RHNC-MD approach. It efficiently correctsgN(r ) for the
inevitable error caused by cutting off the interparticle pote
tial at a finite distance in simulations, as was shown in R
@4# for the case of liquid aluminum. The RHNC-MD metho
is an especially powerful device for liquid structure calcu
tions when applied to small MD systems, for which comp
tational cost of simulations is not high. This fact motivat
the authors of Refs.@2–4# to study the bridge function de
pendence on the simulation box size. The aim of this pape
to investigate the impact of a phenomenon disregarded
viously @3,4# — finite-size effects in computer experimen
@5# — on computer-generated bridge functions. Since
finite-size effects become increasingly relevant for small M
systems and their influence onB(r ) or the static structure is
not known a priori, the subject of the present study is
1
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great current interest. In the following, we give a short o
line of a self-consistent procedure devised to correctB(r ) for
finite-size effects.

It is well known that a pair distribution functiongN(r )
obtained in aclosedensemble with fixed number of particle
N, such as, for example, the molecular dynamics ensem
differs from itsopen system, i.e., whereN is allowed to fluc-
tuate, counterpartg(r ). The two functions coincide in the
thermodynamic limitN→` only and the difference betwee
them at finiteN is called finite-size effects in computer sim
lations. Clearly, if extracted according to Eqs.~1!–~3! the
bridge functionB(r ) will depend onN through implicit de-
pendence ongN(r ). Two other quantities on whichB(r )
depends are the potential energy truncation distanceRc and
the PDF extrapolation distanceR, both being thoroughly
studied in Refs.@3,4#. We note that, in principle, closure~2!
is not correct since it contains a closed system PDF ar
,R and the open system PDF~in the mean spherical ap
proximation! at r .R. This improperness can be correct
for by transforming obtained in a simulationgN(r ) into the
open system PDF,g(r ), i.e., correctinggN(r ) for finite-size
effects,beforesubstituting it into Eq.~2!. The simplest pos-
sible expression relating the PDFs in open and closed
tems can be written as@5#

g~r !5gN~r !1
1

N

S~0!

2

]2

]r2
@r2gN~r !#, ~5!

whereS(0) is the static structure factor of the open system
k50. Relation~5! has the standard for transforming betwe
ensembles correction term of order 1/N. Its explicit evalua-
tion from the MD method, however, is not practical or,
some cases, it is even infeasible. Thus we choose a fu
simplification of Eq. ~5! by neglecting the density depen
dence ofg(r ):

g~r !5gN~r !1
S~0!

N
gN~r !. ~6!

Now this new expression~6! is well suitable for practical
applications. ProvidedS(0) is known, Eq.~6! could be used
for correcting the PDF obtained from an MD simulatio
S(0) is not knowna priori, however, but linked tog(r )
itself by standard Fourier transformation@1#. The fact that
S(k) andg(r ) are related makes it possible to construct
iterative cycle for evaluatingS(0). It consists of alternate
application of the correction to PDF due to Eq.~6! for r
,R and subsequent evaluation of this PDF for the wh
range of distances due to Eqs.~1! and~2!. Initially we adopt
some trial guess forS(0), which we obtained from theMori-
Hoshino-Watabescheme@6#, and correctgN(r ) according to
Eq. ~6!. Next, the correctedgN(r ) is substituted into closure
~2! and the OZ equation, supplemented by this closure
solved numerically. The resulting solutiong(r ) is Fourier
transformed to calculate new estimate forS(0) and the
whole cycle is iterated until a desired convergence
reached. As a result we obtainB(r ), g(r ), andS(k) of the
model system interacting via cutoff potential. In order
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evaluate the structure functions of the full system one ne
to use the obtainedB(r ) in the RHNC scheme. We will refe
to the just described method asiterativeRHNC-MD method
to distinguish it from thenoniterativeone given above in the
text. The method was applied earlier by one of the author
study the structure of a liquid potassium-sodium alloy@7#. In
this report we test its efficiency for the case of a mod
monatomic liquid, liquid sodium near freezing.

II. RESULTS AND DISCUSSION

In order to assess the finite-size dependence of the br
functions extracted from molecular dynamics simulations
cording to the procedure described above we performed
MD runs for model liquid sodium at a temperatureT
5373 K and densityr50.024217 Å23 in standardNVE en-
sembles ofN5500 and 2048 particles. The pair potenti
was obtained from the second order perturbation theory
the empty-core local pseudopotential with the only parame
r c set to 1.78 a.u.@8#. The local field correction factor wa
used in the form of Ichimaru and Utsumi@9#. The potential
energy was truncated at its third maximumr 513.14 Å so as
to lift the force discontinuity at the truncation distance, a
then shifted at that point to zero. In this way we made b
force and potential energy fields continuous at the cu
distance hence improving total energy conservation dur
the simulations. To eliminate the potential cutoff part fro
the overall dependency of the bridge function onN, we used
the same potential truncation distance for both simulatio
The equations of motion were integrated by the veloci
Verlet algorithm with the time incrementdt56 fs. For the
first MD system we performed 106 time steps after initial
equilibration and the second system was let to evolute ov
period of 53105 time steps. The selected lengths of t
simulations allowed us to achieve the total number of P
samples, which is proportional toN(N21) and the number
of sampled configurations, to be of order 101021011 as indi-
cated in Ref.@4# necessary for canceling statistical noise
the PDF. In our simulations we sampled PDF every 10 ti
steps. For the PDF extrapolation distancesR from Eq.~2! we
used the largest values possible, i.e., aboutL/2, in both simu-
lations.

Pair distribution functions obtained from the simulatio
were used to calculate bridge functionsB(r ) according to the
iterative procedure described above. To solve the OZ inte
equation we used a Newton-Raphson routine@10# based on
numerically inexpensive fast Fourier transforms. The num
of grid points of the potential and step size in numeric
integrations were 1024 points and 0.06 Å, respectively. T
truncation distance used in the integrations 61.44 Å is la
enough to neglect the influence of the cutoff part of the p
tential on the long-wavelength limit ofS(k) ~at least in the
HNC and mean spherical approximations!. The iterations in
the Eqs.~1!,~2!,~6! cycle were stopped after two successi
values ofS(0) did not differ more than by 0.01% of thei
magnitude. A total of 10 iterations were needed to achie
the desired self-consistency for both MD system sizes.
Fig. 1 we show the convergedBc(r ) and raw~without finite-
size corrections! Br(r ) bridge functions for the two system
1-2
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FINITE-SIZE DEPENDENCE OF THE BRIDGE . . . PHYSICAL REVIEW E 63 061201
considered. The converged functions almost coincide w
each other throughout the whole range of distances but f
small exception atr;12 Å, where the smaller system’
B(r ) takes insignificant negative values. The raw brid
functions of both systems experience appreciable devia
from Bc(r ) for all r. In the region of small separations th
deviation becomes negligible thus providing support for
universality hypothesis of Rosenfeld@11#. At intermediate
distances,Br(r )’s of both MD systems are shifted upward
the bigger the system the smaller the shift. The raw brid
function of the 2048-particle system additionally has a p
teau extending fromr;12 Å up to the extrapolation dis
tanceR;20 Å. For larger separationsr .R, Br(r ) smoothly
drops to zero. This behavior of the bridge function agre
well with the reported earlier results for liquid aluminum a
LJ system@4#. As the extrapolation distance of the small
system is only;13 Å its raw bridge function does not ex
hibit any plateau. The authors of Ref.@4# conjectured that the
appearance of the plateau inBr(r ) is connected purely with
insufficient statistics of the MD PDF and the noise that t
function contains. They also found that by improving t
PDF statistics, either by increasing the number of particle
the simulation cell or the length of the simulation, one can
principle, reduce the plateau to zero. It was established th
total number of 1010–1011 PDF samples was sufficientl
large to totally cancel random statistical noise in PDF a
remove the plateau. In our study we achieved compara
numbers of the PDF samples but the plateau did not dis
pear. Upon decreasing the total number samples the br
function became more noisy but the plateau did not van
We are inclined to conclude, therefore, that the mentio
plateau is not connected with the random statistical er
associated with the number of samples, but with a sor
systematic error present in computer-generated PDF,
finite-size effects. Correcting for the finite-size effects e
ciently diminishes the plateau for all values of the extrap
lation distanceR ~in Fig. 1 only the data forR;L/2 are
shown!.

Now we move on to discussing the finite-size effects
the structural properties — pair distribution function a
static structure factor of the investigated system. For

FIG. 1. Converged and raw bridge functions of liquid sodium
T5373 K as extracted from molecular dynamics simulations
500- and 2048-particle ensembles.
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purpose it is instructive to estimate the magnitude of
corrections to PDF due to relation~6!. By substituting a typi-
cal for alkali metals value 0.05 forS(0) and adopting typical
number of particles in simulation box to be 500, we find t
correction to be about 1024 at long distances, whereg(r )
;1. Clearly, this quantity is too small to be visually ob
served on graphs of the PDF’s obtained in the two simu
tions. In Fig. 2 we plotted the corrected PDF’s comput
from the iterative RHNC-MD scheme when using the 204
particle MD ensemble as a reference system and the raw
data calculated for the 500-particle system. It is seen fr
the figure that the raw and corrected PDF are not distingu
able from each other for all separations. Much bigger se
tiveness to the details of the bridge function is displayed

FIG. 3. The RHNC-MD static structure factors as obtained w
the help of 500-and 2048-particle systems and the rawS(k) for both
systems. By open circles we denoted experimental data of Wa
@12#.

t
f

FIG. 2. The RHNC-MD pair distribution function for the 2048
particle system and raw MD data for the 500-particle system. In
inset we present the long-range region ofg(r ) in more detail.
1-3
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the static structure factor. As seen from Fig. 3, in which
show the corrected~via iterative RHNC-MD procedure! and
the raw static structure factors~via noniterative RHNC-MD
method! obtained for the two MD systems, the corrected d
perfectly coincide with each other. It is important to no
here that while correctedS(k) is the static structure factor o
the opensystem interacting via full potential, the rawS(k)
has no physical meaning. In particular, it should not be c
fused with the static structure factor of theclosedMD sys-
tem. The largest departure of the raw static structure fac
occurs in the region of small wave numbersk;0.5 Å21. In
that region both rawS(k)’s exhibit additional unphysica
maximum. This maximum results from the intermedia
distance deviations of the bridge function and is totally
moved upon applying the correction procedure. We estim
the order of the error brought about by neglecting the fin
size effects in the noniterative RHNC-MD method to
about 35% atk50 for the system studied. For a compariso
in Fig. 3 we also depicted the experimental data of Was
@12# for the static structure factor of liquid sodium und
similar thermodynamic conditions as those of the pres
study. We see that the theoretical data agrees reasonably
with the actual static structure at all values of wave numb
ys
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Both the region of the main peak ofS(k) and the long-
wavelength region are accurately reproduced.

As conclusions we would like to make the following ob
servations. The procedure of extracting bridge functio
from molecular dynamics simulations proposed earlier@2#
and, based upon it, the noniterative RHNC-MD method
badly affected by finite-size effects in computer experimen
The corrections to MD-generated PDF’s caused by these
fects are not visible on the pair distribution functions b
have profound impact on the bridge functions and the st
structure factor. In the long-wavelength limit they lead to
spurious maximum inS(k). A simple self-consistent routine
proposed in the paper provides a reasonable account o
finite-size effects and makes it possible to avoid unphys
manifestations in MD simulations of the liquid static stru
ture.
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